NEW STANDARD ACADEMY

REVIEW TEST - 01

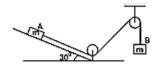
Do not open this Test Booklet until you are asked to do so. 25-11-2024

JEE(MAIN): 11"Undergoing Students

Read carefully the Instructions on the Back Cover of this Test Booklet.

Important Instructions :

- Immediately fill in the form number on this page of the Test Booklet with Blue/Black Ball Point Pen. Use of pencil is strictly prohibited.
- The candidates should not write their Form Number anywhere else (except in the specified space) on the Test Booklet/Answer Sheet.
- 3. The Test Booklet consists of 90 questions.
- 4. There are three parts in the question paper 1,2,3 consisting of Physics, Chemistry and Mathematics having 30 questions in each subject and each subject having Two sections. (i) Section-I contains 20 multiple choice questions with only one correct option. Marking scheme : +4 for correct answer, 0 if not attempted and -1 in all other cases. (ii) Section-II contains 10 Numerical Value Type questions. Attempt any 5 questions. First 5 attempted questions will be considered for marking. Marking scheme : +4 for correct answer, 0 if not attempted and -1 in all other scheme : +4 for correct answer, 0 if not attempted and -1 in all other scheme : +4 for correct answer, 0 if not attempted and -1 in all other cases.
- Use Blue/Black Ball Point Pen only for writting particulars/marking responses on Side –1 and Side–2 of the Answer Sheet. Use of pencil is strictly prohibited.
- No candidate is allowed to carry any textual material, printed or written, bits of papers, mobile phone any electronic device etc, except the Identity Card inside the examination hall/room.
- Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- On completion of the test, the candidate must hand over the Answer Sheet to the invigilator on duty in the Room/ Hall. However, the candidate are allowed to take away this Test Booklet with them.


 Name of the Candidate(In Capitals)

 Date of Examintation

 Candidate's Signature:

 Invigilator's Signature:

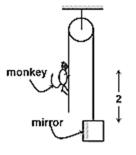
 Two blocks A and B of same mass are connected through a string and arranged as shown in figure. When the system is released from rest and there is no friction, then

(A) Acceleration of A is g (B) acceleration of A is $\frac{g}{2}$

(C) Tension in the string is zero

- (D) tension in the string is $\frac{mg}{4}$
- 2. A block of mass 0.1 kg is held against a wall by applying a horizontal force of 5 N on the block. If the coefficient of friction between the block and the wall is 0.5, the magnitude of the frictional force acting on the block is

 (A) 2.5 N
 (B) 0.98 N


(C) 4.9 N			(D)	0.49	Ν

 Three equal weights A, B and C of mass 2 kg each are hanging on a string passing over a fixed frictionless pulley as shown in the figure. The tension in the string connecting weights B and C is

(A) zero	(B) 13.33 N
(C) 3.3 N	(D) 19.6 N

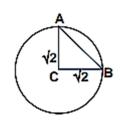
4. In the adjacent figure, the monkey has a mass twice that of the block which has a plane mirror fixed on the monkey's side (as shown). Initially, the system is at rest and the vertical separation between the monkey and the mirror is 2 m. The speed of the monkey when he looks himself in the mirror is

5. The co-ordinates of a moving particle at any time t are given by $x = ct^2$ and $y = bt^2$. The speed of the particle is given by

- (A) 2t (c + b) (B) 2t $\sqrt{(C^2 - b^2)}$ (C) $t\sqrt{(C^2 + b^2)}$ (D) 2t $\sqrt{(C^2 + b^2)}$
- 6. A bus is moving with a constant velocity v1 along a horizontal road. A man standing inside the bus throws a ball upward with velocity v0 and catches the ball. The magnitude of displacement of the ball with respect to ground is

(A)
$$\frac{v_0^2}{g}$$
 (B) zero
(C) $\frac{2v_0v_1}{g}$ (D) $\frac{v_0v_1}{g}$

7. A body A is thrown vertically upward with initial velocity v_1 . Another body B is dropped from a height h at time t = 0. Which equation represents correct relationship between distance of separation between the two particles (x) and time t (before they collide with ground)?

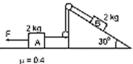

$$(\mathbf{A}) \mathbf{X} = |\mathbf{h} - \mathbf{v}_1 \mathbf{t}|$$

$$(B) X = |h + v_1 t|$$

(C)
$$X = |v_1t + 1/2 gt^2|$$

- (D) $X = |1/2 gt^2 v_1t|$
- 8. A projectile is thrown with a velocity u_0 at an angle θ with the horizontal. The ratio of the rate of change of speed w.r.t. time at the highest point to that at the point of projection is
 - (A) $g \sin \theta$
 - (B) $-g \sin \theta$
 - (C) zero
 - (D) g
- A particle starts moving with constant acceleration and covers a distance x in first t seconds. The distance travelled by it in the next 2t seconds is
 - (A) 8x
 - (B) 3x
 - (C) x
 - (D) none of these
- 10. A particle moves in the x-y plane with a velocity $v_x = 8t 2$ and $v_y = 2$. If it passes through the point x = 14 and y = 4 at t = 2 s, the equation of the path is
 - (A) $x = y^2 y + 2$
 - (B) x = y + 2
 - (C) $x = y^2 + 2$
 - (D) $x = y^2 + y + 2$
- 11. A man starts running with constant speed along a circular path of radius $\sqrt{2}$ m. He completes two rounds in 16 seconds. The

magnitude of the average velocity in first 2 seconds is


- (A) 2 m/s
- (B) 1 m/s
- (C) 3 m/s
- (D) 6 m/s
- 12. The velocity vector of a particle moving over a horizontal plane is given by $v = 2t \hat{i}$. The ratio of the magnitude of instantaneous acceleration of the particle at t = 2 sec to the magnitude of displacement of the particle during the interval of first 2 sec is
 - $(A) \frac{3}{4}$
 - (B) 4/3
 - (C) 5/4
 - (D) cannot be determined
- 13. A particle under the action of a constant force moves from rest upto 20 seconds. If distance covered in first 10 seconds is S1 and that covered in next 10 seconds in S₂, then
 - (a) $S_1 = S_2$
 - (b) $S_2 = 3S_1$
 - (c) $S_2 = 2S_1$
 - (d) $S_2 = 4S_1$
- 14. Let $\vec{a} = \alpha \hat{\imath} + 2\hat{\jmath} \hat{k}$ and $\vec{b} = -2\hat{\imath} + \alpha \hat{\jmath} + \hat{k}$, where $\alpha \in R$. If the area of the parallelogram whose adjacent sides are represented by the vectors \vec{a} and \vec{b} is $\sqrt{15(\alpha^2 + 4)}$, then the value of $2|\vec{a}|^2 + (\vec{a}.\vec{b})|\vec{b}|^2$ is equal to (a) 10
 - (b) 7
 - (c) 9
 - (d) 1
- 15. Let $\vec{a} = -\alpha \hat{i} + 3\hat{j} \hat{k}$, $\vec{b} = 3\hat{i} \beta\hat{j} + 4k$ and $\vec{c} = \hat{\iota} + 2\hat{\jmath} - 2k$, $\alpha \in R$, be three vectors. If the projection of \vec{a} on \vec{c} is 10/3 and $\vec{b} \times \vec{c} =$ $-6\hat{i} + 10\hat{j} + 7\hat{k}$, then the value of $\alpha + \beta$ equal to:
 - (a) 3 (b) 4(d) 6
 - (c) 5
- 16. Let $\vec{a} = 2\hat{\imath} \hat{\jmath} + 5\hat{k}$ and $\vec{b} = \alpha\hat{\imath} + \beta\hat{\jmath} + 2\hat{k}$. If $(\vec{a} \times \vec{b} \times \hat{\imath}) \hat{k} = 23/2$, then $|\vec{b} \times 2\hat{\imath}|$ is equal to (a) 4 (b) 5 (c) $\sqrt{21}$ (d) $\sqrt{17}$

- 17. A small block of mass 2 kg is kept on a bigger block of mass M. The coefficient of friction between blocks M and m is 0.1. The bigger block M is given a constant acceleration 2 m/s^2 . The acceleration of 2 kg block is
 - (A) 1 m/s^2 towards right
 - (B) 1 m/s^2 towards left
 - (C) 2 m/s^2 towards right
 - (D) 2 m/s^2 towards left
- 18. A simple pendulum hangs from the roof of train. The string is inclined towards the rear of the train. What is the nature of motion of the train?

(a) Uniform	m	(b) Accelerated

- (c) Retarded (d) At rest
- 19. A juggler throws balls into air. He throws one whenever the previous one is at its highest point. If he throws n balls each second, the height to which each ball will rise is (a) $g/2n^2$ (b) g/n^2 (c) $2g/n^2$ (d) 2g/n
- 20. Let $\vec{a} = \alpha \hat{\imath} + \hat{\jmath} + \beta \hat{k} \rho$ and $\hat{b} = 3\hat{\imath} 5\hat{\jmath} + 4\hat{k}$ be two vectors, such that $\vec{a} \times \vec{b} = \hat{i} + 9\hat{i} + 12\hat{k}$. Then the projection of $\vec{b} - 2\vec{a}$ on $\vec{b} + \vec{a}$ is equal to (a) 2 (b) 39/5 (c) 9 (d) 46 /5

- 21. If $\vec{a} = 2\hat{\imath} + \hat{\jmath} + 3\hat{k}$, $\vec{b} = 3\hat{\imath} + 3\hat{\jmath} + \hat{k}$ and $\vec{c} = c_1\hat{\imath}$ $+ c_2 \hat{j} + c_3 \hat{k}$ are coplanar vectors and $\vec{a} \cdot \vec{c} = 5$, $\vec{b} \perp \vec{c}$, then $122(c_1 + c_2 + c_3)$ is equal
- 22. Let $\vec{a}, \vec{b}, \vec{c}$ be three non-coplanar vectors such that $\vec{a} \times \vec{b} = 4\vec{c}$, $\vec{b} \times \vec{c} = 9\vec{a}$ and $\vec{c} \times \vec{a} = \alpha \vec{b}$, $\alpha > 0$. If $|\vec{a}| + |\vec{b}| + |\vec{c}| = \frac{1}{36}$ then α is equal to.....
- 23. A cricketer hits a ball in a vertical x-y plane from the ground level with a velocity $\vec{v}_0 = (10\sqrt{3i} + 30\hat{j})$ m/s. Find the time in which velocity vector makes an angle of 30° with horizontal x-axis. (Take $g = 10 \text{ m/s}^2$.)
- 24. A car accelerates from rest at a constant rate of 2 m/s^2 for some time. Then, its retards at a constant rate of 4 m/s^2 and comes to rest. What is the maximum speed attained by the car if it remains in motion for 3 seconds?
- 25. In the figure shown, coefficient of friction between block A and ground is 0.4 and that between wedge and block B is zero. The wedge is fixed. Find the tension in the string and acceleration of block A if F = 28 N.

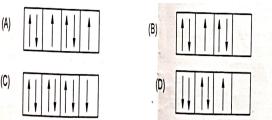
Chemistry

- 26. In an organic compound of molar mass 108 g/mol C,H and N atoms are present in 9:1:3.5 by weigth. Molecular formula can be:
 - (A) $C_6H_8N_2$
 - $(B)C_7H_{10}N$
 - (C) $C_5H_6N_3$
 - (D) $C_4H_{18}N_3$
- 27. What volume of hydrogen gas at 273K and 1 atm pressure will be consumed in obtaining 21.6gm of elemental boron (atomic mass=10.8) from the reduction of boron trichloride by hydrogen?
 (1) 44.0%
 - (A) 44.8lit (B) 22.4 Lit (C) 89.6 lit (D) 67.2 lit.
- 28. A 5.2 molal aqueous solution of methyl alcohol CH₃OH is supplied .What is the mole fraction of Methyl alcohol in the solution
 (A) 0.86 (B) 0.086
 - (c) 0.043 (D) 1.0
- 29. The number of protons electrons and neutrons in a molecule of heavy water are respectively (A) 8,10,11
 - (B) 10,10,10
 - (C) 10,11,10,
 - (D) 11,10,10
- 30. 10 mL of 2M NaOH solution is added to 200 mL of 0.5 LM of NaOH solution . What is the final concentration?
 - (A) 0.57M
 - (B) 5.7 M
 - (C) 11.4 M
 - (D) 1.14 M
- 31. Which of the following sets of quantum numbers represents the 19th electron of chromium ?

	n	1	m	S
(A)	4	1	-1	1/2
(B)	4	0	0	1/2
(C)	3	2	-2	1/2
(D)	3	2	0	1/2

32. The mass of the proton is 1840 times of electron, its accelerated by a potential difference is 1kV. The kinetic energy of proton will be

$$(B)_{\frac{1}{1840}} \text{ keV}$$


- (D) 1840 keV
- 33. The number of radial nodes in 5d is

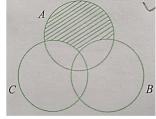
(A) 1	(B) 2
(C) 3	(D) 4

34. According to Bohr's theory the angular momentum of an electron in 5th th orbit is

(A)
$$25\frac{h}{\pi}$$
 (B) $1.0\frac{h}{\pi}$
(C) $10\frac{h}{\pi}$ (D) $2.5\frac{h}{\pi}$

35. In which of the following orbital diagrams are both pauli's exclusion principle and Hund's rule violated?

- 36. The correct order of second ionization potential of carbon nitrogen oxygen and fluorine is
 - (A) C > N > O > F
 - (B) O>N >F>C
 - (C) O> F>N>C
 - (D)F > O > N > C
- 37. Atomic radii of fluorine and neon in Angstrom units are respectively given by
 - (A) 0.72,1.60
 - (B) 1.60, 1.60
 - (C) 0.72,0.72
 - (D) none of these
- 38. The first ionization potential of Na ,Mg,Al and Si Are in the order
 - (A) Na< Mg>Al< Si
 - (B) Na \leq Mg \leq Al > Si
 - (C) Na>Mg>Al>Si
 - (D) Na > Mg > Al<Si
- 39. Which has most stable +2 oxidation state?
 - (A) Sn ` (B) Pb
 - (C) Fe (D) Ag
- 40. The setsrepresenting the correct order of first ionization potential is
 - (A) K>Na<Li
 - (B) Be>Mg>Ca
 - (C) B>C>N
 - (D) Ge>Si>C
- 41. Which of the following has sp³ hybridization?
 - (a) BBr₃
 - (b) XeF₄
 - (c) BCI₃
 - (d) XeO_3
- 42. Which of the following compounds, shows ionic, covalent and coordinate bonds?(A) NaCl


(B) HCI

(C) CuOS₄: 5H₂O (D) CaSO₄;5H₂O

- 43. In O₂⁻.O₂, and O₂²⁻ molecular species, the total number of antibonding electrons respectively are
 - (a) 8,6,8
 - (b) 6,6,6
 - (c) 1,0,2
 - (d) 7,6,8
- 44. Increasing order of electronegativity of the hybrid orbitals is
 - (a) $sp < sp^2 < sp^3$
 - (b) $sp^2 < sp < sp^3$
 - (c) $sp^3 < sp^2 < sp$
 - (d) $sp^2 < sp^3 < sp$.
- 45. How many $\mathbf{C} \mathbf{C}$ bonds are there in \bigcirc
 - (A) 14*σ*, 8*π*
 - (B) 18σ, 8π
 - (C) 9*σ*, 4*π*
 - (D) 14*σ*, 2*π*
- 46. Numbers of mole of electrons in 0.5 mole of N³⁻ will be_____
- 47. The maximum number of electrons that can have principal quantum number, n=3 and spin quantum number, m_s = $-\frac{1}{2}$,_____
- 48. Total number of elements which have only single oxidation state (other than zero) in their corresponding stable compounds.
 - (1) B, (2) TI, (3) Cs, (4) F, (5) Al, (6) Zn (7) Ga, (8) Pb,(9) At, (10) Fr
- 49. Based on VSEPR theory, the number of 90° F - Br - F angles in a molecules of BrF₅, is_____
- 50. Among the triatomic molecules/ions, BeCl₂, N₃⁻, N₂O, NO₂⁺, O₃ SCI₂, IC l₂⁻ I₃⁻ and XeF₂, the total number of linear molecule(s)/ion(s) where the hybridization of the central atom does not have contribution from the dorbital(s) is

<u>Maths</u>

- 51. If $aN = \{ax:x \in N\}$ then the set $4n \cap 6N$ is (a) 8N (b) 10N
 - (c) 12N (d) none of these
- 52. The shaded region in the given figure is

(a) $A \cap (B \cup C)$ (b) $A \cup (B \cap C)$ (c) A \cap (B - C)

(d) A-(B∪ C)

- 53. If n>0 and exactly 15 integers satisfy (x+6) (x-4) (x-5)(2x-n)
 ≤ 0, then sum of digitd of the least possible value of n is

 (a) 10
 (b) 12
 (c) 14
 (d) 16
- 54. The complete solution set of inequality

 $\frac{(x-5)^{1005}(x-3)^{1008}(x-1)}{x^{1006}(x-2)^3(x-3)^5(x-6)(x+9)^{1010}} \le 0 \text{ is}$

- $(a)(-\infty, -9) \cup (-8,0) \cup (0,1) \cup (2,3) \cup [5,6)$
- (b) $(-\infty, -9) \cup (-9,0) \cup (0,1) \cup (2,3) \cup (5,6)$
- (c) $(-\infty, -9) \cup (-9,0) \cup (0,1] \cup (2,3) \cup [5,6)$
- (d) $(-\infty, 0) \cup (0,1] \cup (2,3) \cup [5,6)$]
- 55. If α , β are the roots of a $x^2 + c = bx$ then the equation $(a + cy)^2 = b^2 y$ in y has the roots (a) $\alpha \beta^{-1} \alpha^{-1} \beta$ (b) $\alpha^{-2} \beta^{-2}$
 - (c) $\alpha^{-1}\beta^{-1}$
 - (d) $\alpha^2 \beta^2$
- 56. If a, beta are the nonzero roots of $ax^2 + bx + c$ = 0 and $\alpha^2 \beta^2$ are the roots of $a^2x^2 + b^2x + c^2$ = 0 then a, b, c are in
 - (a) G.P.
 - (b) H.P.
 - (c) A.P.
 - (d) none of these
- 57. The number of values of a for which equations $x^3 + ax + 1 = 0$ and $x^4 + ax^2 + 1 = 0$ have a common root is
 - (1) 0
 - (2) 1
 - (3) 2
 - (4) infinite
- 58. A value of b for which the equations $x^{2} + bx - 1 = 0$, $x^{2} + x + b = 0$ have one root in common is
 - $(1)\sqrt{2}$
 - (2) i $\sqrt{3}$
 - $(3)\sqrt{2}$
 - $(4)\sqrt{3}$
- 59. The quadratic equation p(x) = 0 with real coefficients has purely imaginary roots. the equation p(p(x)) = 0 has
 - (1) only purely imaginary roots
 - (2) all real roots
 - (3) two real and two purely imaginary roots
 - (4) neither real nor purely imaginary roots
- 60. If $a_1, a_2, a_3, ..., a_n$ are in H.P and f(k) =

$$\left(\sum_{r=1}^{n} a_{r}\right) - a_{k} then$$

$$\frac{a_{1}}{f(1)}, \frac{a_{2}}{f(2)}, \frac{a_{3}}{f(3)}, \dots, \frac{a_{n}}{f(x)} \text{ are in}$$
(1)A.P
(2)G.P
(3)H.P
(4) none of these

- 61. Let $n \in N$ n > 25 Let A, G, H denote the arithmetic mean, geometric mean, and harmonic mean of 25 and n. The least value of n for which A, G, H $\in \{25, 26, ..., n\}$ is
 - (1) 49
 - (2) 81
 - (3) 169
 - (4) 225
- 62. Value of $\left(1 + \frac{1}{3}\right) \left(1 + \frac{1}{3^2}\right) \left(1 + \frac{1}{3^4}\right) \left(1 + \frac{1}{3^4}\right)$ $\left(\frac{1}{3^8}\right)$ ∞ is equal (2) $\frac{6}{5}$ (1)3
 - $(3)\frac{3}{2}$

- 63. If a, b, and c are in A.P., then $a^3 + c^3 8b^3$ is equal to
 - (1) 2abc
 - (2) 3abc
 - (3) 4abc
 - (4)-6abc
- 64. Consider an A.P. a_1 , a_2 , a_3 such that $a_3 + a_5 + a_8$ = 11 and $a_4 + a_2 = -2$ then the value of $a_1 + a_6$ $+ a_7$ is
 - (1)-8
 - (2)5
 - (3)7
 - (4)9
- 65. If 2 and 6 are the roots of the equation a x^2 + bx + 1 = 0, then the quadratic equation, whose roots are 1/(2a + b) and 1/(6a + b) is:
 - (1) $2x^{2} + 11x + 12 = 0$
 - (2) $4x^2 + 14x + 12 = 0$
 - $(3) x^2 + 10x + 16 = 0$
 - (4) $x^2 + 8x + 12 = 0$
- 66. If the domain of the function $\sin^{-1}\left(\frac{3x-22}{2x-19}\right)$

 $+\log_e\left(\frac{3x^2-8x+5}{x^2-3x-10}\right)$ is $(\alpha\beta]$, then $3\alpha + 10\beta$ is equal to:

(1) 94	(2) 100
(3) 95	(4) 98

67. Let α , β be the roots of the equation $x^{2}+2\sqrt{2}x-1=0$. The quadratic equation whose roots are $\alpha^4 + \beta^4$ and $\frac{1}{10}(\alpha^4 + \beta^4)$ is: (1) $x^2 - 190x + 9466 = 0$ (2) $x^2 - 195x + 9466 = 0$ (c) $x^2 - 195x + 9506 = 0$ (3) x^2 -180x+9506 = 0

68. Let α , β be such $\pi < \alpha - \beta < 3\pi$. If $\sin \alpha + \sin \beta = -\frac{21}{65}$ and $\cos \alpha + \cos \beta = -\frac{27}{65}$, then the value of $\cos \frac{\alpha - \beta}{2}$ is $(1) - \frac{3}{\sqrt{300}}$ $(2)\frac{3}{\sqrt{300}}$ $(4) - \frac{6}{65}$ $(3)\frac{6}{65}$ 69. Let $f_K(x) = \frac{1}{k} (\sin^k x + \cos^k x)$ Where $x \in R$ and $k \ge 1$ then the value of $f_4(x) - f_6(x)$ equals

(1)
$$\frac{1}{6}$$
 (2) $\frac{1}{3}$
(3) $\frac{1}{4}$ (4) $\frac{1}{12}$

70. If $0 \le x \le and \cos x + \sin x = \frac{1}{2}$, then $\tan x$ is

$$(1) \frac{(1-\sqrt{7})}{4} \qquad (2) \frac{(4-\sqrt{7})}{3} \\ (3) - \frac{(4+\sqrt{7})}{3} \qquad (4) \frac{(1+\sqrt{7})}{4}$$

Section-B

- 71. In a ΔPQR , if 3 sinP+4 cos Q = 6 and 4 sin Q +3 $\cos P=1$ then $(\cot R)^2$ is equal to
- 72. Let α and β be the solutions of the quadratic equation $x^2 - 1154x + 1 = 0$ then the value of $\alpha^{\frac{1}{4}} + \beta^{\frac{1}{4}}$ is equal to
- 73. The quadratic equation. $x^2 + mx + n = 0$ has roots which are twice those of $x^2 + px + m = 0$ and m, n and p ne0 Then the value of n/p is
- 74. Given a, b, c are in A.P., b, c, d are in G.P., and c, d, e are in H.P. If a = 2 and e = 18 then the sum of all possible value of c is
- 75. The value of the sum

$$\sum_{i=1}^{20} i\left(\frac{1}{i} + \frac{1}{i+1} + \frac{1}{i+2} + \dots + \frac{1}{20}\right) is____$$